Solid-Phase Combinatorial Synthesis of Polyisoxazolines: A Two-Reaction Iterative Protocol

Mark J. Kurth,* Lisa A. Ahlberg Randall, and Kazuya Takenouchi¹

Department of Chemistry, University of California, Davis, California 95616

 $Received September 10, 1996$ [®]

Starting from a polymer-bound olefin, iterative application of nitrile oxide 1,3-dipolar cycloaddition and selenide oxidation/elimination steps were employed to deliver a polymer-bound triisoxazoline that can be liberated from the resin by transesterification. When four nitroseleno ethers $(2-5)$ and four capping nitroalkanes (**6**-**9**) were employed, a triisoxazoline library (**V**) of 64 positional isomers was obtained by three iterative applications of these two reactions. The tactical flexibility of this strategy for preparing small polyfunctional oligomers is particularly attractive in that each subunit addition proceeds via a C-C bond-forming step.

Introduction

The first reports of combinatorial chemistry focused on creation of peptide libraries utilizing iterative amide bond-forming protocols.2 Thus, starting with suitably protected amino acid building blocks, large array and split-mix peptide libraries can be prepared by the iterative application of deprotection and activation/coupling steps. The resulting peptides are of utility, but their pharmaceutical applications are limited because of difficulties encountered in biodistribution^{3,4} (e.g., crossing the blood-brain barrier) and *in vivo* stability (e.g., proteases in the stomach and bloodstream effectively degrade these biopolymers).⁵ The combinatorial synthesis of peptoid libraries from readily available starting materials has been exploited to address these issues. $6,7$ For example, the Chiron peptoid approach 6 employed iterative synthetic steps of *N*-acylation and Ca -*N*-substitution to deliver oligomers of *N*-substituted glycines.

These results, coupled with the importance of methodological developments in solid-phase⁸ and combinatorial strategies,⁹ the general advantages of iterative

Figure 1. Iterative strategy for the solid-phase synthesis of polyisoxazolines.

synthetic strategies,¹⁰ the importance of $C-C$ bondforming reactions in organic chemistry, and our interest in small molecule library synthesis,¹¹ led us to explore the isoxazoline-based iterative strategy outlined in Figure 1. In addition, isoxazolines are often biological active¹² suggesting that the targeted polyisoxazolines may prove useful in addressing some of the biochemical issues mentioned above.

Starting from a polymer-bound olefin, iterative application of nitrile oxide 1,3-dipolar cycloaddition 13 and selenide oxidation/elimination¹⁴ steps were envisioned to deliver polymer-bound polyisoxazoline **I**. This strategy could be adopted to library preparations by one of three methods: (i) polyisoxazoline libraries with the same repeating unit but variable length (variable "*n*" in **I**) could be prepared, (ii) polyisoxazoline libraries of fixed length (fixed "*n*" in **I**) but incorporating variable "subunits" (i.e., prepared from various nitroseleno ethers of general structure **III**) could be prepared, and (iii) polyisoxazoline libraries of variable length and composed of variable

[®] Abstract published in *Advance ACS Abstracts*, November 15, 1996. (1) Permanent address: Institute for Biomedical Research, Teijin Ltd., 4-3-2 Asahigaoka Hino, Tokyo 191, Japan.

^{(2) (}a) Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.; Kazmierski, W. M.; Knapp, R. J. *Nature* **1991**, *354*, 82-4. (b) Zuckermann, R. N.; Kerr, J. M.; Siani, M. A.; Banville, S. C. *Int. J. Pept. Protein Res.* **1992**, *40*, 497-506.

⁽³⁾ Kim, B. H.; Chung, Y. J.; Keum, G.; Kim, J.; Kim, K. *Tetrahedron Lett.* **1992**, *33*, 6811-14.

⁽⁴⁾ Spatola, A. F. In *Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins*; Weinstein, B., Ed.; Marcel Dekker: New York, 1983; Vol. 7.

⁽⁵⁾ Miller, S. M.; Simon, R. J.; Ng, S.; Zuckermann, R. N.; Kerr, J. M.; Moos, W. H. *Drug Dev. Res.* **1995**, *35*, 20-32.

⁽⁶⁾ Zuckermann, R. N.; Martin, E. J.; Spellmeyer, D. C.; Stauber, G. B.; Shoemaker, K. R.; Kerr, J. M.; Figliozzi, G. M.; Goff, D. A.; Siani,

M. A.; Simon, R. J.; Banville, S. C.; Brown, E. G.; Wang, L.; Richter,

L. S.; Moos, W. H. *J. Med. Chem.* **1994**, *37*, 2678-85. (7) Pinilla, C.; Chendra, S.; Appel, J. R.; Houghten, R. A. *Pept. Res.* **1995**, *8*, 250-7.

^{(8) (}a) Crowley, J. I.; Rapoport, H. *Acc. Chem. Res.* **1976**, *9*, 135- 44. (b) Leznoff, C. C. *Chem. Soc. Rev.* **1974**, *3*, 65-85. (c) Leznoff, C. C. *Acc. Chem. Res.* **1978**, *11*, 327-33.

^{(9) (}a) Ellman, J. A. *Acc. Chem. Res.*, **1996**, *29*, 132-43. (b) Gordon, E. M.; Gallop, M. A.; Patel, D. V. *Acc. Chem. Res.* **1996**, *29*, 144-54. (c) Thompson, L. A.; Ellman, J. A. *Chem. Rev. (Washington, D.C.)*, **1996**, *96*, 555–600. (d) Eichler, J.; Appel, J. R.; Blondelle, S. E.; Dooley, C.
T.; Doerner, B.; Ostresh, J. M.; Perez-Paya, E.; Pinilla, C.; Houghten, R. A. *Med. Res. Rev.* **1995**, *15*, 481-96. (e) Gordon, E. M.; Barret, R. W.; Dower, W. J.; Fodor, S. P. A.; Gallop, M. A. *J. Med. Chem.* **1994,**
37, 1385–401. (f) Gallop, M. A.; Barrett, R. W.; Dower, W. J.; Fodor,
S. P. A.; Gordon, E. M. *J. Med. Chem.* **1994**, *37*, 1233–51. (g) Pavia, M. R.; Sawyer, T. K.; Moos, W. H. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 387-96.

⁽¹⁰⁾ Dellaria, Joseph F., Jr.; Denissen, Jon F.; Kerdesky, Francis A. J.; Maki, Robert G.; Hoffman, Daniel J.; Nellans, Hugh N. *J. Labelled Compd. Radiopharm.* **1989**, *27*, 1437-50.

^{(11) (}a) Chen, C.; Ahlberg Randall, L. A.; Miller, R. B.; Jones, A. D.; Kurth, M. J. *J. Am. Chem. Soc.* **1994**, *116*, 2661-2. (b) Kurth, M. J.; Ahlberg Randall, L. A.; Chen, C.; Melander, C.; Miller, R. B.; McAlister, K.; Reitz, G.; Kang, R.; Nakatsu, T.; Green, C. *J. Org. Chem.* **1994**, *59*, 5862-4.

^{(12) (}a) Groutas, W. C.; Chong, L. S.; Epp, J. B.; Venkataraman, R.; Brubaker, M. J.; Stanga, M. A.; Kim, E.-H.; Keller, C. E*. Bioorg.*
Med. Chem. Lett.**1992**, 2, 1571–4. (b) Khalil, M. A.; Maponya, M. F.;
Mod. K.-H.; You $52 - 60.$

^{(13) (}a) Beebe, X.; Schore, N. E.; Kurth, M. J. *J. Org. Chem.* **1995**, *60*, 4196-203. (b) Beebe, X.; Chiappari, C. L.; Olmstead, M. M.; Kurth,

M. J.; Schore, N. E. *J. Org. Chem.* **1995**, *60*, 4204-12. (14) Sharpless. K. B.; Lauer, R. F.; Teranishi, A. Y. *J. Am. Chem. Soc.* **1973**, *95*, 6137-9.

"subunits" could be prepared. In addition to this tactical flexibility, the strategy outlined in Figure 1 is appealing in that each subunit addition proceeds via a $C-C$ -bondforming step. Here, we report iterative application of the two-step process outlined in Figure 1 to prepare a small library of fixed length (three isoxazoline units) composed of variable subunits (four nitroseleno ethers plus four "capping" nitroalkanes).

Results and Discussion

Our initial plan was to employ nitrotrityl ether **IV** as the generic precursor to each isoxazoline subunit. The idea was that 1,3-dipolar cycloaddition followed by trityl deprotection, $-CH_2OH \rightarrow -CHO$ oxidation, and Wittig methenylation would deliver homologated resin **II**. Moreover, condensation of the aldehyde intermediate with $(MeO)₂P(O)CHN₂$ would deliver the alkyne analog of $II¹⁵$ and set the stage for isoxazole formation in the second iteration. However, since this approach requires four steps per iteration versus the two steps required using nitroseleno ether **III**, the former was abandoned.16

To validate the nitroseleno ether iterative strategy outlined in Figure 1, we set out to prepare triisoxazolines **1226** and **1227** (Scheme 1).¹⁷ Our starting resin, polymerbound 3-butenyl benzoate $[@1; @=resin$ (styrene/2%) divinylbenzene copolymer)], was prepared from polystyrene/2%-divinylbenzene copolymer by lithiation/ $CO₂$ quench,¹⁸ $-CO_2H \rightarrow -COCl$ activation,¹⁹ and esterification with 3-buten-1-ol in pyridine. Dehydrative 1,3 dipolar cycloaddition of 1-nitro-4-(phenylseleno)butane (**2**) with resin ®**1** was accomplished by treatment of the benzene swollen resin with phenyl isocyanate (4 equiv), triethylamine, and **2** (2 equiv) at reflux for 4 d under nitrogen. Subsequent transesterification of resin ®**12** with sodium methoxide (THF:MeOH4:1)²⁰ delivered isoxazoline **12** [44% yield and \approx 95% crude purity (see Figure 3) from $\mathcal{O}CO₂H$; yield based on a titrated $\mathcal{O}CO₂H$ loading of 2.1 mequiv/g], establishing that the crucial $C-C$ bondforming 1,3-dipolar cycloaddition step was successful. Sodium periodate selenide to selenoxide oxidation with concomitant elimination regenerated the requisite olefin functional group. The success of this transformation was again established by NaOMe transesterification, but the product obtained proved to be the conjugated olefin (a consequence of olefin isomerization during the transesterification step as no isoxazoline products arising from the conjugated olefin were observed in subsequent iterations). Having thus established the efficacy of both the 1,3-dipolar cycloaddition step and the olefin regeneration

^a Note: see ref 17 for a comment regarding compound numbering.

step, we applied a second iteration converting ®**12** to diisoxazoline ®**122** (again employing nitroseleno ether **2**) and a third iteration converting ®**122** to triisoxazoline ®**1226** [using nitrobutane (**6**) as a "capping" unit]. Both steps of solid-phase iterations two ($@12 \rightarrow @122$) and three ($\mathcal{D}122 \rightarrow \mathcal{D}1226$) were effected at room temperature (instead of reflux for the 1,3-dipolar cycloaddition steps as optimized in corresponding solution-phase reactions) and validated by sodium methoxide transesterification of ®**1226**, yielding the targeted "trimer" **1226**. This fully characterized triisoxazoline was obtained in 18% overall yield and ≈95% purity (see the supporting information) from $\mathcal{O}_{6}H_{4}CO_{2}H$; an average yield of 81% per step for this eight step solid-phase synthesis. In a similar fashion, "trimer" **1227** was obtained from ®**1** by two iterations with nitroseleno ether **2** and a capping iteration with nitroalkane **7** (overall yield of 17%; 80% per step).

With these results in hand, attention was turned to the construction of a library of triisoxazolines of generalized structure **V**. By employing four different nitroseleno ethers (**2**-**5**) in iterations one and two plus four different capping nitroalkanes (**6**-**9**) in iteration three, a library of 64 (4 \times 4 \times 4) positionally isomeric triisoxazolines would be obtained. We anticipated using mass spectrometry to verify that each 21 targeted triisoxazoline was in fact obtained in this split-mix²² protocol. However, since numerous of these analogs would have the same

⁽¹⁵⁾ Brown, D. G.; Velthuisen, E. J.; Commerford, J. R.; Brisbois, R. G.; Hoye, T. R. *J. Org. Chem.* **1996**, *61*, 2540-1.

⁽¹⁶⁾ A polyisoxazole version of this approach is currently under investigation and will be reported in due course.

⁽¹⁷⁾ Note: a systematic numbering system is employed where the product number is derived from the compound numbers of its component precursors. Thus, refering to Scheme 1, combinatorial components **1**, **2**, **2**, and **6** are employed to construct triisoxazoline **1226** (®**1226** when polymer-bound) by the sequence $\mathbf{1} \rightarrow \mathbb{Q}\mathbf{1} + \mathbf{2} \rightarrow \mathbb{Q}\mathbf{12} + \mathbf{2} \rightarrow \mathbb{Q}\mathbf{122}$ $+ 6 \rightarrow 21226 \rightarrow 1226$. Solution libraries (see Table 1) are lettered A-U; when polymer-bound, these same libraries are referred to as ®A-®U. Finally, oxidative elimination of selenium from ®**12** gives olefin ®**12a**; likewise, oxidative elimination of selenium from library ®A gives library ®Aa. The symbol ® denotes the resin (styrene/2% divinyl benzene copolymer).

⁽¹⁸⁾ Fyles, T. M.; Leznoff, C. C. *Can. J. Chem.* **1976**, *54*, 935-42. (19) Fyles, T. M.; Leznoff, C. C., Weatherston, J. *Can. J. Chem.* **1978**, *56*, 1031-41.

⁽²⁰⁾ Meyers, H. V.; Dilley, G. J.; Durgin, T. L.; Powers, T. S.; Winssinger, N. A.; Zhu, H.; Pavia, M. R. *Mol. Diversity* **1995**, *1*, 13- 20.

⁽²¹⁾ In a large library, it is quite probable that not all of the targets would be present [see: (a) Lowe, G. *Chem. Soc. Rev.* **1995**, *24*, 309–317. (b) Zhao, P.-L.; Zambias, R.; Bolognese, J. A.; Boulton, D.; Chapman, have used mass spectrometry to verify that each targeted positional isomer is present in our library.

molecular formula, we adapted the modified split-mix procedure outlined in Figure 2. Treating resin ®**1** with each of the four nitroseleno ethers **2**-**5** in separate flasks followed by admixture gave the four-component resin mixture \mathfrak{A} ([α] is defined in Figure 2; $\mathfrak{A} = \mathfrak{B} \mathbf{12} + \mathfrak{B} \mathbf{13}$ + ®**14** + ®**15**). Phenylseleno ether to olefin conversion $(\mathbf{\mathfrak{A}} \rightarrow \mathbf{\mathfrak{A}}$ a) followed by performing iteration two in four flasks, again using nitroseleno ethers **2**-**5**, delivered four unique positionally isomeric mixtures designated ®B, ®C, ®D, and ®E. Submitting each of these mixtures to oxidative elimination and iteration three (required four flasks for each diisoxazoline mixture ®Ba-®Ea, one for each "capping" subunit **6**-**9**) produced a total of 16 unique positionally isomeric mixtures; for example, ®B \rightarrow ®Ba and subsequent reaction with O₂N(CH₂)₃CH₃ (6) gives ®F, with O2NCH2C6H5 (**7**) gives ®G, with O2- $NCH_2C_6H_4(p)$ -CH₃ (8) gives ®H, and with $O_2NCH_2C_6H_4$ -

Figure 2. Combinatorial targets, precursors, and modified

a

Figure 3. (a) 1H-NMR spectrum of **12.** (b) 13C-NMR spectrum of **12**.

hydride²⁴ ($-I \rightarrow -\text{SePh}$). Nitroseleno ethers **4** and **5** were prepared by Michael addition of the potassium alkoxide of $HO(CH₂)₃SePh$ [in turn prepared from $HO(CH₂)₃Br$ + $(PhSe)_2/NaBH_4]$ to $O_2NCH=CHC_6H_5$ and $O_2NCH=CHCH-$ (CH3)2, respectively. Nitrobutane (**6**) is commercially available, and nitroalkanes **7**-**9** were prepared by treatment of the appropriate benzyl bromide with sodium nitrite.25

Several observations regarding this combinatorial synthesis are pertinent. For example, both the $-CH=CH₂$ \rightarrow isoxazoline and $-CH_2CH_2SePh \rightarrow -CH=CH_2$ transformations are reliable solid-phase reactions. Figure 3 shows the crude 1H- and 13C-NMR spectra for **12**, the product obtained by sequential treatment of resin ®**1** with nitroseleno ether $\hat{\mathbf{z}}$ + PhNCO/Et₃N and sodium methoxide. These spectra, as well as the 1H- and 13C-NMR spectra obtained from **13** (®**1** + **3**), **14** (®**1** + **4**), and **15** (\mathcal{D} **1** + **5**), show essentially pure monoisoxazoline product.

We find that both solution- and solid-phase 1,3-dipolar cycloaddition reactions deliver mixtures of diastereomers in iterations two and three. While this can present reaction management problems in solution, these issues are minimized in our solid-phase protocol where product diastereomers are as easily manipulated as are subunit positional isomers.

Mass spectrometry has proven to be an ideal tool for verifying the split-mix ensemble of products formed by this iterative strategy (see Table 1). Using the modified split-mix protocol outlined in Figure 2, 21 four-component libraries were obtained where library A is a monoisoxazoline mixture, libraries B-E are diisoxazoline mixtures, and libraries F-U are triisoxazoline mixtures. All of these libraries were analyzed by low-resolution FAB⁺ mass spectrometry to verify that each targeted isoxazoline derivative was indeed present in the relevant library (our modified split-mix protocol ensured that no library contained positional isomers with identical formulas). For example, library D contains four phenylseleno-containing diisoxazolines (**124**, **134**, **144**, and **154**), and unit mass FAB⁺ data provides clear evidence that each anticipated

The combinatorial players required for this modified split-mix procedure were all readily available. Nitroseleno ethers **2** and **3** were prepared from bromochlorobutane and bromochloropentane, respectively, by sequential treatment with sodium nitrite²³ ($-Br \rightarrow -NO_2$), sodium iodide $(-Cl \rightarrow -I)$, and diphenyl diselenide/sodium boro-

(*p*)-Br (**9**) gives ®I.

split-mix protocol.

^{(22) (}a) Furka, AÄ .; Sebestye´n, F.; Asgedom, M.; Dibo´, G. *Int. J. Pept. Protein Res.* **1991**, *37*, 487-93. (b) Janda, K. D. *Proc. Natl. Acad. Sci. U.S.A.* **1994**, *91*, 10779-85.

⁽²³⁾ Brewster, K.; Harrison, J. M.; Inch, T. M.; Williams, N. *J. Chem. Soc., Perkin Trans. 1* **1987**, 21-26.

⁽²⁴⁾ Clive, D. L., Bergstra, R. J. *J. Org. Chem.* **1990**, *55*, 1786-92. (25) (a) Kornblum, N.; Larson, H. O.; Blackwood, R. K.; Mooberry, D. D.; Oliveto, E. P.; Graham, G. E. *J. Am. Chem. Soc.* **1956**, *78*, 1497- 1501. (b) Kornblum, N.; Smiley, R. A.; Blackwood, R. K.; Iffland, D. C. *J. Am. Chem. Soc.* **1955**, *77*, 6269-80.

Table 1. FAB⁺ **Mass Spectrometry Data for Combinatorial Products**

compd	$[MH]^+$	$[MNa]$ ⁺	library	compd	$[MH]^+$	$[MNa]$ ⁺	library
12	314	336	A	1437	478	500	K
13	328	350	A	1537	444	466	K
14	420	442	A	1238	386	408	L
15	386	408	A	1338	400	422	L
122	397	419	B	1438	492	514	L
132	411	433	B	1538	458	480	L
142	503	525	B	1239	450/452	472/474	M
152	469	491	B	1339	464/466	486/488	M
123	411	433	$\mathbf C$	1439	556/558	578/580	M
133	425	447	$\mathbf C$	1539	522/524	544/546	М
143	517	539	\overline{C}	1246	430	452	N
153	483	505	$\mathbf C$	1346	444	466	N
124	503	525	D	1446	536	558	N
134	517	539	D	1546	502	524	N
144	609	631	D	1247	464	486	\mathbf{O}
154	575	597	D	1347	478	500	O
125	469	491	E	1447	570	592	\mathbf{O}
135	483	505	E	1547	536	558	\mathbf{O}
145	575	597	E	1248	478	500	$\mathbf P$
155	541	563	E	1348	492	514	$\mathbf P$
1226	324	346	F	1448	584	606	P
1326	338	360	F	1548	550	572	P
1426	430	452	F	1249	542/544	564/566	Q
1526	396	418	F	1349	556/558	578/580	Q
1227	358	380	G	1449	648/650	670/672	Q
1327	372	na	G	1549	614/616	636/638	Q
1427	464	486	G	1256	396	418	R
1527	430	452	G	1356	410	na	${\bf R}$
1228	372	394	H	1456	502	524	$\mathbb R$
1328	386	408	H	1556	468	490	R
1428	478	500	Н	1257	430	452	S
1528	444	466	H	1357	444	na	S
1229	436/438	458/460	I	1457	536	558	S
1329	450/452	472/474	I	1557	502	524	S
1429	542/544	564/566	I	1258	444	466	T
1529	508/510	530/532	I	1358	458	480	T
1236	338	360	J	1458	550	572	T
1336	352	374	\mathbf{J}	1558	516	538	T
1436	444	466	$\mathbf J$	1259	508/510	530/532	U
1536	410	432	\mathbf{J}	1359	522/524	na	U
1237	372	394	K	1459	614/616	na	U
1337	386	408	K	1559	580/582	602/604	U

positional isomer is present in the mixture; selenium isotope fingerprints for both the $[MH]^+$ and the $[MNa]^+$ molecular ions in libraries B-E are particularly unequivocal. Likewise, library M contains four brominecontaining triisoxazolines (**1239**, **1339**, **1439**, and **1539**), and again, unit mass FAB⁺ data provide definitive evidence that each anticipated positional isomer is present in the mixture. Exact mass FAB⁺ analysis of these mixtures also proved useful. For example, HRMS FAB⁺ data for library N gave ([triisoxazoline \cdot H]⁺/ calculated g/mol/observed g/mol) **1246**/430.2342/430.2355, **1346**/444.2498/444.2510, **1446**/536.2761/536.2778, and **1546**/502.2917/502.2933. Electrospray mass analysis was also investigated and corroborated the FAB⁺ data presented in Table 1.

Summary

A tactically flexible strategy for the preparation of oligomeric isoxazolines has been reported. In addition to the subunit versatility of this approach to combinatorial synthesis, the method benefits from the fact that each subunit addition proceeds via a $C-C$ -bond forming step. A "traceless attachment"26 and isoxazole variants of this strategy will be reported in due course.

Experimental Section

General Procedures. Polystyrene/2%-divinylbenzene (200- 400 mesh) was purchased from Acros Organics and used directly. Solvents were purified as follows: dimethyl sulfoxide (DMSO) and ethanol were dried over 4 Å molecular sieves; pyridine was distilled from sodium; benzene was distilled from potassium; tetrahydrofuran (THF) was distilled from sodium/ benzophenone. All reactions were conducted under an inert atmosphere. Infrared spectra were determined on a Galaxy 3000 Series Mattson FTIR. 1H and 13C NMR spectra were measured in CDCl₃ at 300 and 75 MHz, respectively, and chemical shifts are reported in ppm downfield from internal tetramethylsilane. Mass spectra were obtained with a Fisons/ VG ZAB-VSE double focus sector instrument with BE geometry [fast-atom bombardment (FAB); sample dissolved in CH2Cl2 or MeOH; probe tip contained NBA/Na matrix; ionization by Cs+ and accelerated to 8000 eV]. Elemental analyses were performed at the MidWest Microlab, Indianapolis, IN.

1-Nitro-4-(phenylseleno)butane (2). To a solution of NaNO2 (6.90 g, 100.0 mmol) in DMSO (120 mL) was added 1-bromo-4-chlorobutane (8.57 g, 50.0 mmol), and the reaction was stirred at room temperature for 3 h. Water (50 mL) was added, and the resulting mixture was extracted with ether (3 \times 100 mL). The combined extracts were washed with brine, dried $(Na₂SO₄)$, and evaporated under atmospheric pressure at 50 °C to give 6.58 g (96%) of crude 1-chloro-4-nitrobutane as a pale yellow oil: ¹H NMR δ 1.84-1.95 (m, 2 H), 2.15-2.24 $(m, 2 H)$, 3.59 (t, 2 H, $J = 6 Hz$), 4.44 (t, 2 H, $J = 6 Hz$).

To a solution of crude 1-chloro-4-nitrobutane (6.58 g, 48 mmol) in acetone (250 mL) was added NaI (10.8 g, 71.8 mmol), and the solution was refluxed overnight. The reaction was quenched by the addition of aqueous $NaHSO₃$ (50 mL), and the resulting solution was extracted with ether $(3 \times 100 \text{ mL})$. The combined extracts were washed with brine, dried $(Na₂-$ SO4), and evaporated under atmospheric pressure at 50 °C to give 4.37 g (40%) of crude 1-iodo-4-nitrobutane as a brown oil: ^IH NMR δ 1.92 (quintet, 2 H, J = 6 Hz), 2.15 (quintet, 2 H, J $= 6$ Hz), 3.22 (t, 2 H, $J = 6$ Hz), 4.42 (t, 2 H, $J = 6$ Hz).

To a solution of diphenyl diselenide (3.57 g, 11 mmol) in absolute EtOH (120 mL) was added NaBH4 (0.87 g, 22 mmol), and the reaction mixture was stirred at room temperature for 0.5 h. A solution of crude 1-iodo-4-nitrobutane (4.37 g, 19 mmol) in absolute EtOH (25 mL) was added to the reaction and stirring continued for 2 h at room temperature. After concentration of the solution *in vacuo*, water (100 mL) was added, and the solution was extracted with ether (3×100 mL). The combined extracts were washed with brine, dried (Na2-SO4), and evaporated *in vacuo*. The residue was purified by silica gel chromatography (1:99 \rightarrow 2:98 \rightarrow 4:96 ethyl acetate/ hexane) to give **2** (3.23 g, 25% from 1-bromo-4-chlorobutane) as a colorless oil: FTIR (neat) 1556 (NO₂), 1383 (NO₂) cm⁻¹; ¹H NMR δ 1.74 (quintet, 2 H, $J = 6$ Hz), 2.10 (quintet, 2 H, *J* $= 6$ Hz), 2.90 (t, 2 H, $J = 6$ Hz), 4.33 (t, 2 H, $J = 6$ Hz), 7.22-7.29 (m, 3 H), 7.44-7.49 (m, 2 H); 13C NMR *δ* 26.54, 26.96, 27.02, 74.81, 127.01, 129.04, 129.44, 132.72. Anal. Calcd for C10H13NO2Se: C, 46.52; H, 5.08; N, 5.43. Found: C, 46.53; H, 5.14; N, 5.39.

5-Nitro-1-(phenylseleno)butane (3). Following the procedure described for the synthesis of **2**, 1-bromo-5-chloropentane was converted to **3** (50% from 1-bromo-5-chloropentane) as a colorless oil: FTIR (neat) 1550 (NO₂), 1383 (NO₂) cm⁻¹; ¹H NMR δ 1.47-1.55 (m, 2 H), 1.73 (quintet, 2 H, $J = 6$ Hz), 1.99 (quintet, 2 H, $J = 6$ Hz), 2.89 (t, 2 H, $J = 6$ Hz), 4.34 (t, 2 H, $\hat{J} = 6$ Hz), 7.23-7.29 (m, 3 H), 7.46-7.49 (m, 2 H); ¹³C NMR *δ* 26.25, 26.76, 27.18, 29.29, 75.35, 126.89, 129.04, 129.96, 132.66. Anal. Calcd for C₁₁H₁₅NO₂Se: C, 48.54; H, 5.55; N, 5.15. Found: C, 48.61; H, 5.64; N, 5.13.

2-Phenyl-2-[[3-(phenylseleno)propyl]oxy]nitroethane (4). To a solution of diphenyl diselenide (26.95 g, 86 mmol) in absolute EtOH (900 mL) was slowly added NaBH4 (6.53 g, 173 mmol) and the solution stirred at room temperature for 0.5 h. 3-Bromoethanol (20.0 g, 144 mmol) was added with stirring for 3 h at room temperature. After concentration *in vacuo*, water (200 mL) was added and the mixture extracted with ether (3 [×] 200 mL). The combined extracts were washed (26) See, for example: Plunkett, M. J.; Ellman, J. A. *J. Org. Chem.*

¹⁹⁹⁵, *60*, 6006-7.

with brine, dried (Na2SO4), and evaporated *in vacuo* to give crude 3-(phenylseleno)propanol quantitatively (35.92 g) as an orange oil: IR (neat) 3351 (br), 1579, 1478, 1437, 1247, 1065, 1022 cm⁻¹; ¹H NMR δ 1.85 (quintet, 2 H, $J = 7$ Hz), 2.45 (t, 1 H $J = 7$ Hz), 2.96 (t, 2 H, $J = 7$ Hz), 3.67 (q, 2 H, $J = 7$ Hz), 7.22 (m, 3 H), 7.49 (m, 2 H)]; 13C NMR *δ* 23.95, 32.48, 61.79, 126.66, 128.90, 129.91, 132.33.

Potassium hydride (10.66 g, 93.0 mmol, 35 wt % KH in mineral oil) was washed with hexane (6×10 mL), dried in a stream of N_2 , and suspended in dry THF (50 mL). A solution of crude 3-(phenylseleno)propanol (17.11 g, 79 mmol) in THF (50 mL) was added dropwise at room temperature. The mixture was cooled to -40 °C, and a solution of *trans-* β nitrostyrene (6.22 g, 41.7 mmol) in THF (50 mL) was added dropwise over 15 min and stirred for an additional 0.5 h. The reaction was quenched by the addition of 1 M acetic acid (120 mL) followed by water (150 mL), the mixture separated, and the aqueous extracted with ether $(3 \times 200 \text{ mL})$. The combined extracts were washed with saturated aqueous NaHCO₃ and brine, dried (Na2SO4), and evaporated *in vacuo*. The residue was purified by silica gel chromatography (2: 98 ethyl acetate/ hexane) to give **4** (5.80 g, 38% from *trans-â*-nitrostyrene) as a pale yellow oil: FTIR (neat) 1554 (NO₂), 1379 (NO₂) cm⁻¹; ¹H NMR δ 1.89 (quintet, 2 H, $J = 6$ Hz), 2.91 (t, 2 H, $J = 6$ Hz), 3.40 (dt, 1 H, $J = 6$, 12 Hz), 3.47 (dt, 1 H, $J = 6$, 12 Hz), 4.36 $(dd, 1 H, J = 3, 12 Hz$, 4.58 (dd, 1 H, $J = 9, 12 Hz$), 5.02 (dd, 1 H, $J = 3$, 9 Hz), 7.19-7.26 (m, 3 H), 7.30-7.46 (m, 7 H); ¹³C NMR *δ* 24.02, 29.97, 68.43, 78.50, 80.29, 126.67, 126.70, 128.98, 129.01, 129.98, 132.40, 132.47, 136.30. Anal. Calcd for $C_{17}H_{19}NO_3$ Se: C, 56.05; H, 5.26; N, 3.84. Found: C, 56.18; H, 5.28; N, 3.94.

3-Methyl-2[[3-(phenylseleno)propyl]oxy]nitrobutane (5). Nitromethane (48.8 g, 0.80 mol) and isobutyl aldehyde (28.8 g, 0.40 mol) were stirred together in a room temperature water bath. Potassium hydroxide in MeOH (1.5 mL, 3 M) was added dropwise, and the reaction was stirred for 30 min and quenched by the addition of concd H_2SO_4 (20 drops, to pH = 1). The layers were separated, and the organic was washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄), and concentrated *in vacuo* to give 1-nitro-3-methyl-2-butanol (44.0 g, 83%) as a pale yellow liquid: 1H NMR *δ* 0.97 (d, 3 H, *J* = 7 Hz), 0.99 (d, 3 H, *J* = 7 Hz), 1.79 (octet, 1 H, *J* = 7 Hz), 2.92 (d, 2 H, $J = 6$ Hz), $4.07 - 4.13$ (m, 1 H), $4.33 - 4.51$ (m, 2 H); 13C NMR *δ* 17.20, 18.12, 31.62, 73.30, 79.24.

1-Nitro-3-methyl-2-butanol (38.2 g, 0.29 mol) and acetic anhydride (43.97 g, 0.431 mol) were refluxed together for 5 h before quenching with aqueous $NAHCO₃$. The resulting mixture was heated for 1 h at 80 $^{\circ}$ C while NaHCO₃ powder was added. The layers were separated, and the aqueous was extracted with ether $(3 \times 75 \text{ mL})$. The combined organics were dried (Na2SO4) and concentrated *in vacuo* to give a light brown oil (32.76 g, 99%). The 1-nitro-3-methyl-1-butene oil was distilled to a yellow oil prior to use: ¹H NMR δ 1.13(s, 6 H), 1.16 (s, 6 H), $\frac{2.56-2.64}{m}$, 1 H), 6.95 (dd, 1 H, $J = 1$, 13 Hz), 7.25 (dd, 1 H, *J* = 7, 13 Hz); ¹³C NMR δ 20.79, 28.17, 137.96, 148.33.

Following the procedure described for the synthesis of **4**, 3-methyl-1-nitro-1-butene was converted to **5**, purifying by silica gel chromatography (5:95 EtOAc/Hex) to give **5** as a colorless oil (72% from 3-methyl-1-nitro-1-butene): FTIR (neat) 1558 (NO₂), 1385 (NO₂) cm⁻¹; ¹H NMR δ 0.91 (d, 3 H, $J = 6$ Hz), 0.93 (d, $J = 6$ Hz, 3 H), 1.83-1.97 (m, 3 H), 1.92 (t, 2 H, $J = 6$ Hz), 3.51 (dt, 1 H, $J = 6$, 9 Hz), 3.61 (dt, 1 H, $J = 6$, 9 Hz), 3.82 (dt, 1 H, $J = 3$, 6 Hz), 4.34-4.43 (m, 2 H), 7.20-7.27 (m, 3 H), 7.44-7.48 (m, 2 H); 13C NMR *δ* 17.62, 17.86, 24.13, 30.06, 30.33, 70.01, 77.00, 81.49, 126.70, 128.98, 130.06, 132.45. Anal. Calcd for C14H21NO3Se: C, 50.91; H, 6.41; N, 4.24. Found: C, 50.86; H, 6.38; N, 4.17.

Polymer-Bound Benzoic Acid. With adaptation of the Fyles and Leznoff procedure,18 polystyrene/2% divinylbenzene (20.0 g) was swollen in cyclohexane (200 mL) with stirring at room temperature for 0.5 h and treated sequentially with *n*-butyllithium (150 mL, 0.24 mol, 1.6 M in *n*-hexane) and TMEDA (30.8 g, 0.265 mol). The mixture was heated to 65 °C for 15 h and cooled to room temperature, the polymer allowed to settle, and the supernatant was removed via canula.

The polymer was rinsed with anhydrous THF $(2 \times 50 \text{ mL})$, additional THF (200 mL) was added, and $CO₂$ was bubbled into the mixture for 5 h at room temperature. The reaction mixture was filtered, washed sequentially with THF (2×50) mL), water (4 \times 50 mL), and EtOH (1 \times 50 mL), and suspended in 20% HCl in THF (200 mL). The mixture was stirred at room temperature for 0.5 h and filtered and the polymer washed with THF/water (1:1, 2 \times 50 mL), water (6 \times 50 mL), EtOH (4 \times 50 mL), and Et₂O (4 \times 50 mL). Drying under vacuum overnight gave polymer-bound benzoic acid as a light brown solid. The average acid content of the polymer was found to be 2.1 mmol H^+/g -polymer by acid-base titration [the resin (0.2 g) was swollen in THF/water (1/1) with excess standard aqueous NaOH and back-titrated with standard aqueous HCl]: FTIR (KBr) 1687 (shoulder at 1727) (C=O), 2500-3600 (OH) cm⁻¹. Anal. Calcd for $[(C_9H_8O_2 \cdot H_2O)_{0.20}$ + (C8H8)0.80]: C, 84.50; H, 7.26. Found: C, 84.75; H, 7.07.

Polymer-Bound Benzoyl Chloride.¹⁹ To a solution of polymer-bound benzoic acid (5.00 g) in SOC_2 $(75 \text{ mL}, 1.03 \text{ mol})$ was added 10 drops of DMF, and the resulting mixture was refluxed for 2 h. The reaction mixture was filtered and the polymer washed (3×25 mL each) with CHCl₃, THF, and Et₂O and dried under vacuum overnight to give polymer-bound benzoyl chloride as a pale yellow solid: FTIR (KBr) 1755 $(C=0)$ cm⁻¹.

Polymer-Bound 3-Butenyl Benzoate (®1). Polymerbound benzoyl chloride (4.98 g) was swollen in pyridine (100 mL) with stirring at room temperature for 3.5 h and treated with 3-buten-1-ol (**1**; 1.39 g, 19.2 mmol). Stirring was continued at room temperature for 7 d. The mixture was filtered, and the polymer was washed with THF (2 \times 20 mL), THF/ water (1:1; 2×20 mL), THF (3 \times 20 mL), water (2 \times 20 mL), THF (4 \times 20 mL), and Et₂O (3 \times 20 mL) and dried under vacuum overnight to give ®1 as a yellowish brown solid: FTIR
(KBr) 1724 (C=O) cm⁻¹. Anal. Calcd for [(C₁₃H₁₄O_{2)0.20} + (C8H8)0.80]: C, 87.34; H, 7.49. Found: C, 87.75; H, 7.48.

Polymer-Bound 2-[4,5-Dihydro-3-[3-(phenylseleno) propyl]-5-isoxazolyl]ethyl Benzoate (®12). Resin ®**1** (1.00 g) was swollen in benzene (15 mL) with stirring for 0.5 h. Sequential addition of **2** (997 mg, 3.86 mmol; in 5 mL of benzene), phenyl isocyanate (920 mg, 7.72 mmol), and triethylamine (10 drops) gave a mixture that was refluxed for 4 d. Upon cooling to room temperature, water (2 mL) was added and stirring continued for 1 h. The resulting mixture was filtered and the polymer washed $(3 \times 5 \text{ mL each})$ with THF, THF/water (1:1), THF, CH_2Cl_2 , THF, and Et₂O. Drying under vacuum overnight gave ®**12** as a brown solid: FTIR (KBr) 1715 (C=O) cm⁻¹. Anal. Calcd for $[(C_{23}H_{25}NO_3Se)_{0.20}$ + (C8H8)0.80]: C, 76.90; H, 6.69; N, 1.63. Found: C, 78.03; H, 6.74; N, 1.80.

Polymer-Bound 2-[4,5-Dihydro-3-(2-propenyl)-5-isoxazolyl]ethyl Benzoate (®12a). Resin ®**12** (320 mg) was swollen in THF (6 mL) with stirring at room temperature for 1.5 h and treated with $NaIO₄$ (396 mg, 1.85 mmol) in a mixture of water/MeOH (2 mL/2 mL). After being refluxed for 15 h, the reaction mixture was filtered and the polymer was washed $(3 \times 5$ mL each) with THF, THF/water (1/1), saturated aqueous NaHCO₃, water, THF/water $(1/1)$, THF, CH₂Cl₂, THF, and Et2O. Drying under vacuum overnight gave resin ®**12a** as a pale brown solid: FTIR (KBr) 1717 (C=O) cm⁻¹.

Polymer-Bound 2-[4,5-Dihydro-3-[[4,5-dihydro-3-[3- (phenylseleno)propyl]-5-isoxazolyl]methyl]-5-isoxazolyl] ethyl Benzoate (®122). Resin ®**12a** (559 mg) was swollen in benzene (10 mL) with stirring at room temperature for 0.5 h. Sequential addition of **2** (836 mg, 3.24 mmol; in 5 mL benzene), phenyl isocyanate (771 mg, 6.47 mmol), and triethylamine (10 drops) gave a mixture that was stirred at room temperature for 4 d. The reaction mixture was quenched with water (1 mL), allowed to stir for 1 h, and filtered. The polymer was washed $(3 \times 3$ mL each) with THF, THF/water (1:1), THF, CH_2Cl_2 , THF, and Et_2O and dried under vacuum overnight to give $@122$ as a yellowish brown solid: FTIR (KBr) 1717 (\bar{C} =O) cm⁻¹. Anal. Calcd for $[(C_{27}H_{30}N_2O_4Se)_{0.20} + (C_8H_8)_{0.80}]$: C, 75.22; H, 6.63; N, 2.97. Found: C, 75.71; H, 6.75; N, 2.93.

Polymer-Bound 2-[4,5-Dihydro-3-[[4,5-dihydro-3-(2 propenyl)-5-isoxazolyl]methyl]-5-isoxazolyl]ethyl Ben- **zoate (®122a)**. Following the procedure described for the preparation of ®**12a**, ®**122** (600 mg) gave ®**122a** as a pale yellow solid: FTIR (KBr) 1717 (C=O) cm^{-1} .

Polymer-Bound 2-[4,5-Dihydro-3-[[4,5-dihydro-3-[(4,5 dihydro-3-propyl-5-isoxazolyl]methyl]-5-isoxazolyl]methyl)-5-isoxazolyl]ethyl Benzoate (®1226). Following the procedure described for the preparation of ®**12**, ®**122a** (100 mg) and nitrobutane (60 mg, 0.58 mmol) gave ®**1226** as a pale yellow solid: FTIR (KBr) 1718 (C=O) cm⁻¹. Anal. Calcd for $[(C_{25}H_{31}N_3O_5Se\cdot H_2O)_{0.20} + (C_8H_8)_{0.80}]$: C, 77.08; H, 7.38; N, 4.73. Found: C, 77.26; H, 7.27; N, 4.27.

4,5-Dihydro-3-[[4,5-dihydro-3-[(4,5-dihydro-3-propyl-5 isoxazolyl)methyl]-5-isoxazolyl]methyl]-5-(2-hydroxyethyl)isoxazole (1226). Resin ®**1226** (86 mg) was swollen in a mixture of THF/MeOH (2 mL:0.5 mL) with stirring at room temperature for 0.5 h. Sodium methoxide (72 mg, 25 wt % in MeOH, 0.33 mmol) was added, and the mixture was stirred at room temperature for 2 h. Saturated aqueous NH4- Cl (1 mL) was added and stirring continued for 1 h. The resulting mixture was filtered, and the polymer was washed $(3 \times 2 \text{ mL}$ each) with CH₂Cl₂, water, and CH₂Cl₂. The filtrate was separated into two layers, and the aqueous layer was extracted with CH₂Cl₂ (2 \times 5 mL). The combined organics were dried (Na2SO4), and the solvent was removed *in vacuo* to give 22.8 mg of crude product. The crude material was purified by silica gel chromatography (EtOAc/Hex $(1/1)$ EtOAc) to give **1226** (7.3 mg, 18.1% from the polymer-bound acid) as a white waxy solid: FTIR (neat) 3300 (br), 2922, 1427, 1051, 870, 810 cm⁻¹; ¹H NMR δ 0.97 (dt, 3 H, $J = 3$, 6 Hz), $1.55-1.67$ (m, 2 H), $1.77-2.20$ (m, 3 H), 2.32 (dt, 2 H, $J = 3$, 6 Hz), 2.64 (d, 4 H, $J = 6$ Hz), 2.67-2.91 (m, 3 H), 3.05-3.25 (m, 3 H), 3.74-3.82 (m, 2 H), 4.71-4.88 (m, 3 H); 13C NMR *δ* 13.72, 13.75, 19.69, 29.55, 29.67, 33.00, 33.04, 33.09, 33.14, 33.22, 37.52, 37.57, 37.59, 42.07, 42.14, 42.22, 42.87, 42.94, 42.99, 43.34, 43.39, 59.74, 59.77, 59.83, 76.71, 76.81, 76.86, 77.16, 77.20, 77.30, 77.52, 77.60, 77.62, 77.72, 78.65, 78.67, 78.73, 155.76, 155.96, 155.98, 159.17. Anal. Calcd for C16H25N3O4: C, 59.43; H, 7.79; N, 12.99. Found: C, 59.39; H, 7.96; N, 12.77. The recovered polymer was washed $(3 \times 3$ mL each) with THF and $Et₂O$ and dried under vacuum overnight to give polymer-bound methyl benzoate as a pale yellow solid: FTIR (KBr) 1722 (C=O) cm⁻¹.

Library Synthesis. Polymer-Bound Monoisoxazolines (®12, ®13, ®14, ®15). Resin ®**1** (2.1 mmol H⁺/g polymer, 4.00 g each) was placed into four flasks and swollen in benzene (50 mL) with stirring at room temperature for 0.5 h. Sequential addition of each of the four nitro compounds [16.8 mmol: **2** (4.34 g in 20 mL benzene) to flask one; **3** (4.57 g in 20 mL benzene) to flask two; **4** (6.12 g in 20 mL benzene) to flask three; **5** (5.55 g in 20 mL benzene)], phenyl isocyanate (4.00 g, 33.6 mmol), and triethylamine (50 drops) at room temperature gave mixtures that were refluxed for 4 d. The reactions were cooled, quenched with water (20 mL), and allowed to stir for 1 h. Each mixture was filtered and the polymer washed $(5 \times 15 \text{ mL each})$ with THF, THF/water (1:1), THF, CH₂Cl₂, THF, and $Et₂O$, and dried under vacuum overnight to give ®**12**, ®**13**, ®**14**, and ®**15** as brown solids: FTIR (KBr) ®**12**, 1716 (C=O); ®13, 1714 (C=O); ®14, 1716 (C=O); ®15, 1716 (C=O) cm⁻¹. These resins were mixed to form library \mathcal{A} .

Monoisoxazoline 12. Resin ®**12** (0.20 g) was suspended in THF (3 mL) and allowed to swell for 15 min. Sodium methoxide was added (0.2 mL, 25 wt % solution in MeOH), and the reaction was stirred for 2 h, quenched with H_2O (1) mL), and filtered. The polymer was washed with THF/H2O (1:1, 8 \times 1 mL), THF (3 \times 1 mL), MeOH (3 \times 1 mL), THF (6 \times 1 mL), and ether (3 \times 1 mL). The filtrate was concentrated *in vacuo* and extracted with ether $(3 \times 4 \text{ mL})$. The organic was washed with brine, dried (MgSO₄), and concentrated to give 0.065 g of **12** as a brown solid: FTIR (neat) 3419 (OH), 1579, 1478, 1438, 1065, 1022 cm-1; 1H NMR *δ* 1.73-1.91 (m, 2 H), 1.95 (quintet, 2 H, $J = 7$ Hz), 2.45 (br t, 3 H, $J = 7$ Hz), 2.55 (dd, 1 H, $J = 8$ Hz), 2.91-3.01 (m, 3 H), 3.76 (t, 2 H, $J =$ 6 Hz), 4.63-4.73 (m, 1 H), 7.24-7.27 (m, 3 H), 7.47-7.50 (m, 2 H); 13C NMR *δ* 26.53, 26.92, 27.67, 37.50, 42.62, 59.61, 78.09, 126.89, 128.99, 132.65, 134.73, 158.27.

Monoisoxazolines 13-**15.** As described for **12**, resins ®**13**-®**15** gave **13**-**15** as brown oils. **13**: FTIR (neat) 3437 (OH), 1579, 1478, 1438, 1073, 1023 cm-1; 1H NMR *δ* 1.62- 1.91 (m, 6 H), $2.31 - 2.44$ (m, 3 H), 2.57 (dd, 1 H, $J = 8$ Hz), 2.89-3.03 (m, 3 H), 3.75 (t, 2 H, $J = 6$ Hz), 4.62-4.72 (m, 1 H), 7.21-7.28 (m, 3 H), 7.44-7.48 (m, 2 H); 13C NMR *δ* 26.11, 27.10, 29.36, 37.52, 42.35, 59.54, 77.77, 78.28, 126.68, 128.94, 130.02, 132.35, 158.85. **14** (≈1:1 mixture of diastereomers): FTIR (neat) 3426 (OH), 1578, 1478, 1437, 1073, 1022 cm-1; ¹H NMR δ 1.62-2.06 (m, 4 H), 2.22 (br s, 1 H), 2.30-2.82 (m, 2 H), 3.02 (t, 2 H, $J = 8$ Hz), 3.54-3.76 (m, 4 H), 4.62-4.74 (m, 1 H), 5.24 (s, 1 H), 7.19-7.25 (m, 3 H), 7.26-7.43 (m, 5 H), 7.43-7.53 (m, 2 H); 13C NMR *δ* 24.19, 29.94, 29.97, 30.20, 37.30, 37.70, 38.01, 38.06, 59.34, 59.42, 68.08, 76.41, 76.46, 77.42, 78.71, 78.78, 125.34, 125.81, 125.94, 126.05, 126.68, 128.01, 128.48, 128.93, 129.97, 132.31, 132.34, 136.68, 137.63, 159.32, 159.50. **15** (≈1:1 mixture of diastereomers): FTIR (neat) 3433 (OH), 1579, 1478, 1438, 1266, 1095, 1023 cm-1; ¹H NMR δ 0.82 (d, 3 H, $J = 7$ Hz), 1.01 (d, 3 H, $J = 7$ Hz), 1.74-1.97 (m, 5 H), 2.52-2.71 (m, 2 H), 2.93-3.10 (m, 3 H), 3.36-3.53 (m, 2 H), 3.67 (d, 1 H, $J = 9$ Hz), 3.77 (t, 2 H, $J =$ 6 Hz), 4.72-4.77 (m, 1 H), 7.21-7.27 (m, 3 H), 7.45-7.49 (m, 2 H); 13C NMR *δ* 18.25, 18.29, 19.01, 19.05, 24.22, 29.88, 30.20, 30.96, 31.00, 37.73, 38.43, 38.56, 59.41, 68.27, 78.21, 78.24, 80.65, 80.73, 126.69, 128.94, 129.91, 132.37, 132.41, 159.22. See Table 1 for FAB MS data $(m/e [M + H]^+$ and $[M + Na]^+$) for these monoisoxazolines.

Polymer-Bound Monoisoxazoline Alkene ®**12a**. Resin ®**12** (4.82 g) was swollen in THF (45 mL) with stirring at room temperature for 1 h. A solution of sodium periodate (6.48 g, 30.3 mmol) in H2O/MeOH (15 mL/15 mL) was added, and the mixture was heated at reflux for 14.5 h. Upon cooling, the mixture was filtered and the polymer was washed (5×15 mL each) with THF, THF/water $(1:1)$, saturated aqueous NaHCO₃, water, THF/water (1:1), THF, CH_2Cl_2 , THF, and Et_2O . The resin was dried under vacuum overnight to give ®**12a** as a brown solid: FTIR (KBr) 1716 (C=O) cm⁻¹.

Polymer-Bound Monoisoxazoline Alkenes ®13a, ®14a, and ®15a. As described for ®**12a**, ®**13** (4.70 g) and NaIO4 (6.33 g, 29.6 mmol) gave ®13a [FTIR (KBr) 1716 (C=O) cm⁻¹] ®**14** (5.45 g) and NaIO4 (7.34 g, 34.3 mmol) gave ®**14a** [FTIR (KBr) 1716 (C=O) cm⁻¹], and ®**15** (5.11 g) and NaIO₄ (6.89 g, 32.2 mmol) gave $@15a$ [FTIR (KBr) 1716 (C=O) cm⁻¹].

Polymer-Bound Diisoxazolines ®B, ®C, ®D, and **®E.** Resins ®**12a**, ®**13a**, ®**14a**, and ®**15a** were mixed together (3.20 g each) to give mixed resin ®Aa. This mixed resin was partitioned into four flasks (3.10 g each) and swollen in benzene (50 mL) with stirring at room temperature for 0.5 h. Nitroseleno ether 2 (5.04 g, 19.5 mmol, in 20 mL benzene) was added to flask one, nitroseleno ether **3** (5.32 g, 19.5 mmol, in 20 mL benzene) was added to flask two, nitroseleno ether **4** (7.11 g, 19.5 mmol, in 20 mL benzene) was added to flask three, and nitroseleno ether **5** (6.45 g, 19.5 mmol, in 20 mL benzene) was added to flask four. Phenyl isocyanate (4.65 g, 39.1 mmol) and triethylamine (50 drops) were added to each flask, and the mixtures were stirred at room temperature for 4 d. The reactions were quenched with water (20 mL) and allowed to stir for 1 h. Each mixture was filtered, and the polymer was washed $(5 \times 15 \text{ mL each})$ with THF, THF/water (1:1), THF, CH_2Cl_2 , THF, and Et_2O and dried under vacuum overnight to give ®**B**, ®**C**, ®**D**, and ®**E** as a brown solid: FTIR (KBr) ®**B**, 1712 (C=O); ®**C**, 1716 (C=O); ®**D**, 1716 (C=O); ®**E**, 1716 $(C=0)$ cm⁻¹.

Solution Diisoxazoline Libraries B, C, D, and E. The procedure described for transesterification of ®**12** to liberate monoisoxazoline **12** was followed except 0.40 g of resin (®B, ®C, ®D, or ®E), THF (6 mL), NaOMe/MeOH (0.4 mL), and water (2 mL) were used, giving \approx 110 mg each of solution libraries B, C, D, and E. See Table 1 for FAB MS data (*m/e* $[M + H]^+$ and $[M + Na]^+$) for these diisoxazolines.

Polymer-Bound Olefin ®Ba, ®Ca, ®Da, and ®Ea. The procedure described for conversion of ®**12** to olefin ®**12a** was followed except resin $\mathbb{B}B$ (3.02 g), $\mathbb{B}C$, (3.07 g) $\mathbb{B}D$ (2.94 g), or ®E (2.93 g) was used in place of ®**12** to give ®Ba, ®Ca, ®Da, and \mathcal{E} Ea as light brown solids: FTIR (KBr) \mathcal{E} Ba, 1718 (C=O); \mathcal{D} Ca, 1716 (C=O); \mathcal{D} Da, 1716 (C=O); \mathcal{D} Ea, 1716 (C=O) cm⁻¹.

Polymer-Bound Triisoxazolines ®F, ®G, ®H, and ®**I.** Resin ®Ba was partitioned into four flasks (600 mg each) and swollen in benzene (15 mL) with stirring at room temperature for 1 h. To these flasks were added a nitroalkane [nitrobutane (390 mg) to flask one, phenylnitromethane25a (518 mg, 3.8 mmol) to flask two, (4-methylphenyl)nitromethane^{25b} (571 mg) to flask three, and (4-bromophenyl)nitromethane^{25b} (817 mg) to flask four], phenyl isocyanate (0.90 g, 7.6 mmol), and triethylamine (20 drops). Each mixture was stirred for 4 d at room temperature, quenched with water (3 mL), and allowed to stir for 1 h. The mixtures were filtered, and each polymer was washed (5 \times 5 mL each) with THF, THF/water (1/1), THF, CH₂Cl₂, THF, and Et₂O and dried under vacuum overnight to give ®F, ®G, ®H, and ®I as a yellow solids: FTIR (KBr) ®F, 1718 (C=O); ®G, 1718 (C=O); ®H, 1718 (C=O); ®I, 1718 $(C=0)$ cm⁻¹.

Polymer-Bound Triisoxazolines ®J, ®K, ®L, ®M, ®N, ®O, ®P, ®Q, ®R, ®S, ®T, and ®U. The same procedure described for the conversion of ®Ba to ®F, ®G, ®H, and ®I was followed: FTIR (KBr) ®J, 1718 (C=O); ®K, 1718 (C=O); \mathbb{D} , 1718 (C=O); \mathbb{D} M, 1718 (C=O); \mathbb{D} N, 1718 (C=O); \mathbb{D} O, 1718 $(C=0)$; ®P, 1716 (C=O); ®Q, 1718 (C=O); ®R, 1718 (C=O); $\mathscr{B}S$, 1718 (C=O); $\mathscr{B}T$, 1718 (C=O); $\mathscr{B}U$, 1718 (C=O) cm⁻¹.

Synthesis of Polyisoxazolines *J. Org. Chem., Vol. 61, No. 25, 1996* **8761**

Solution Triisoxazoline Libraries F-**U.** The procedure described for transesterification of ®**12** to liberate monoisoxazoline **12** was followed except 0.40 g of resin (®F, ®G, ®H, ®I, ®J, ®K, ®L, ®M, ®N, ®O, ®P, ®Q, ®R, ®S, ®T, or ®U), THF (6 mL), NaOMe/MeOH (0.4 mL), and water (2 mL) were used, giving 90-230 mg each of solution libraries F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, or U. See Table 1 for FAB MS data $(m/e [M + H]^+$ and $[M + Na]^+$) for these triisoxazolines.

Acknowledgment. We are grateful to the National Science Foundation (Grant CHE-9406891) and Teijin Ltd. for financial support of this work.

Supporting Information Available: ¹H- and ¹³C-NMR spectra for **122** and **1226** (5 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO961730L